Journal of Cave and Karst Studies - ISSN 0146-9517
Volume 60 Number 1: 51-57 - April 1998

A publication of the National Speleological Society

Hydrobasaluminite and Aluminite in Caves of the Guadalupe Mountains, New Mexico
Victor J. Polyak and Paula Provencio


Hydrobasaluminite, like alunite and natroalunite, has formed as a by-product of the H2S-H2SO4 speleogenesis of Cottonwood Cave located in the Guadalupe Mountains of New Mexico. This mineral is found as the major component of white pockets in the dolostone bedrock where clay-rich seams containing kaolinite, dickite, and illite have altered during speleogenesis to hydrobasaluminite, amorphous silica, alunite, and hydrated halloysite (endellite). Gibbsite and amorphous silica are associated with the hydrobasaluminite in a small room of Cottonwood Cave. Opalline sediment on the floor of this room accumulated as the cave passage evolved. Jarosite, in trace amounts, occurs in association with the opalline sediment and most likely has the same origin as hydrobasaluminite and alunite. The hydrobasaluminite was found to be unstable at 25ºC and 50% RH, converting to basaluminite in a few hours. Basaluminite was not detected in the cave samples.

Aluminite has precipitated as a secondary mineral in the same small room where hydrobasaluminite occurs. It comprises a white to bluish-white, pasty to powdery moonmilk coating on the cave walls. The bedrock pockets containing hydrobasaluminite provide the ingredients from which aluminite moonmilk has formed. It appears that recent cave waters have removed alumina and sulfate from the bedrock pocket minerals and have deposited aluminite and gypsum along the cave wall. Gypsum, amorphous silica and sulfate-containing alumina gels are associated with the aluminite moonmilk.

This page last updated: 7 May, 2003 17:41
Web Author: Jim Pisarowicz