Journal of Cave and Karst Studies - ISSN 1090-6924
Volume 62 Number 2: 91-108 - August 2000

A publication of the National Speleological Society

Hydrochemical interpretation of cave patterns in the Guadalupe Mountains, New Mexico
Arthur N. Palmer and Margaret V. Palmer


Most caves in the Guadalupe Mountains have ramifying patterns consisting of large rooms with narrow rifts extending downward, and with successive outlet passages arranged in crude levels. They were formed by sulfuric acid from the oxidation of hydrogen sulfide, a process that is now dormant. Episodic escape of H2S-rich water from the adjacent Delaware Basin, and perhaps also from strata beneath the Guadalupes, followed different routes at different times. For this reason, major rooms and passages correlate poorly between caves, and within large individual caves. The largest cave volumes formed where H2S emerged at the contemporary water table, where oxidation was most rapid. Steeply ascending passages formed where oxygenated meteoric water converged with deep-seated H2S-rich water at depths as much as 200 m below the water table. Spongework and network mazes were formed by highly aggressive water in mixing zones, and they commonly rim, underlie, or connect rooms. Transport of H2S in aqueous solution was the main mode of H2S influx. Neither upwelling of gas bubbles nor molecular diffusion appears to have played a major role in cave development, although some H2S could have been carried by less-soluble methane bubbles. Most cave origin was phreatic, although subaerial dissolution and gypsum-replacement of carbonate rock in acidic water films and drips account for considerable cave enlargement above the water table. Estimates of enlargement rates are complicated by gypsum replacement of carbonate rock because the gypsum continues to be dissolved by fresh vadose water long after the major carbonate dissolution has ceased. Volume-for-volume replacement of calcite by gypsum can take place at the moderate pH values typical of phreatic water in carbonates, preserving the original bedrock textures. At pHs less than about 6.4, this replacement usually takes place on a molar basis, with an approximately two-fold volume increase, forming blistered crusts.

This page last updated: 7 May, 2003 15:21
Web Author: Jim Pisarowicz