NSS exec candidates sought
As required by NSS board acts, the Executive Search Committee is advertising for candidates to run for NSS President and Secretary/Treasurer. If you are interested in running or can suggest a good candidate, please send a note to the committee at execsearch@caves.org or call the chair at 410-792-0742 in the eastern time zone.

Carol Tiderman

USA
September 1-5, 2022—CaveFest. Sewanee Mountain Grotto is hosting their annual auction and party in the heart of TAG over Labor Day weekend. There will be the auction, led cave trips, bat flight float trips, music, dancing, homebrew (available ALL weekend with the purchase of a $10 mug) and a potluck dinner. Please bring a side dish for the potluck if you wish to participate. SMG will provide the meat. Caver’s Paradise Campground amenities include: Bath house with hot showers, volleyball court, dish washing station, RV hook ups, hot tub and a sauna... And not to mention thousands of caves within an hour drive or less. Please refer to the Caver’s Paradise website (http://www.caversparadise.com/) for directions. There is no registration fee but the campground does charge a $10.00 camping fee for the entire weekend and RV hookups are available for an additional $25.00.
All of the proceeds from our event go back into the caving community!
October 6-9, 2022—44th Annual TAG Fall Cave-In on Lookout Mountain, GA, hosted by Dogwood City Grotto. It runs Thursday, Oct. 6 thru noon Sunday, Oct. 9, 2022. Pre-registration is open. More info at https://dogwoodcitygrotto.org/TAG-Fall-Cave-In .

Send items for the calendar to davebunnell@comcast.net at least 4 weeks before desired month of publication (e.g., by April 1 for the May issue).

These two images by Daniel Pawlak were accepted for showing in the 2020 NSS Photo Salon. Both were taken in Lake Cave, one of the backcountry caves in Carlsbad Caverns National Park. It’s accessible by permit to cavers from November 1 through March 31, but closed April to October to protect a sensistive maternity bat colony.
FEATURE ARTICLES

Rock Pigeon Cave, Colorado: an Unusual Cave in Shale 4

Doug Medville

Florida

Lidar Lead 12 .. 10

Ryan and Liz Hoffman

Montana

3OG: Another deep cave in The Bob Marshall Wilderness? 16

Bob Bastasz, Mary Alice Chester, Edd Keudell, Mike McEachern, and Ron Zuber

A Pictorial Essay of Slategoat, Grizzly Gulch, and 3OG 22

Ron Zuber

Technology

Flashlights For Supplemental Illumination When Caving 24

Jeff Cody

DEPARTMENTS

Society News .. 2

Reading .. 25

Underground Update .. 26

President’s Message .. 27

Classified Ads .. 27

ABOUT THE COVER

Front cover:
Bill Farr in Rock Pigeon Cave, Colorado. White sulfate deposits cover the slopes in this unusual cave formed in shale. Photo by Carol Vesely, using a Google Pixel 4 smartphone.

Back cover:
Right: Liz Hoffman by one the Haystack formation in Lidar Lead 12, Florida. Photo by Dan Straley.
Left: Carol Vesely in boot-sucking mud in Rock Pigeon Cave, Colorado. Photo by Bill Farr.
Bottom: It’s an easy two or three day hike over a high pass into Grizzly Gulch basecamp in “The Bob”, Montana, shown here in 2009. From right: Jim Chester, Mary Alice Chester, Bob Bastasz, and Mike McEachern. Photo by Ron Zuber.
Rock Pigeon Cave, Colorado: an Unusual Cave in Shale
Doug Medville; photos by Bob Richards except as noted

Like many cavers, I’ve been in a variety of caves over the years: limestone of course, lava tubes, caves in sandstone, quartzite, dolomite, marble and salt, as well as a number of boulder and crevice caves in igneous rock. Until a few years ago, when I found a small sinkhole in a small outcrop of the Mancos Shale south of Grand Junction, Colorado. Intrigued, we (Doug and Hazel Medville) took a hike and found his sinkholes. We also found a couple of short but spacious caves in the shale. This led me to look more closely at Google Earth images where the Mancos Shale south of Grand Junction, Colorado. Although we thought that it was a gypsum bed, the mineral band turned out to be a mix of several sulfate minerals: some gypsum plus a sodium sulfate called thenardite and a magnesium sodium sulfate called blodite. Was this stuff coming out of the walls or was it a deposit brought into the cave by the seasonal stream that flows into the upper entrance? We also saw exposures of red-orange iron oxides on the walls and ceiling, giving the cave some color. These deposits form when pyrite in the shale is oxidized by surface water with the iron in the pyrite appearing as a ferric oxyhydroxide called goethite.

As we went further into the cave, we realized that the cave wasn’t going to end in a shale choke. The passage just got bigger and its dimensions gradually became larger; usually 6 to 10 feet wide and 20 to 40 feet high. We also saw exposures of red-orange iron oxides on the walls and ceiling, giving the cave some color. These deposits form when pyrite in the shale is oxidized by surface water with the iron in the pyrite appearing as a ferric oxyhydroxide called goethite.

As we went further into the cave, the passage meandered beneath the valley above and its dimensions gradually became larger; usually 6 to 10 feet wide and 20 to 40 feet high. We couldn’t climb out so after enjoying being inside, we trudged down the middle of the gunky floor. After several hundred feet, the floor dried out and in two places it was covered with a white mineral crust for 40-50 feet in two places. Although we didn’t know what it was, we named it “Snowy Creek”—a Colorado mini-version of Snowy River in Fort Stanton Cave. This was another nice discovery.

After several hundred feet of survey, we realized that the cave wasn’t going to end in a shale choke. The passage just got bigger and where it passed under the gully floor, we found 30 to 40-foot-high skylights that would be pit entrances if entered from above.

After surveying over 1,000 feet with ceiling heights reaching 50 feet near its downstream end (thank you, DistoX2), we rounded a corner, saw daylight ahead, and emerged at a walk-out entrance at the bottom of a 110-foot-deep arroyo. We couldn’t climb out so after enjoying being outside and taking pictures, we went back through the cave to the upper entrance and our packs.

Wanting to know more about the white mineral band along the passage walls, needles and white fuzz seen on the walls, and especially the white crusted floor at...
Snowy Creek, we returned to the cave in April 2021, armed with sampling jars and bottles, a pH meter, a thermometer and a hygrometer. We took samples of the white mineral band running along the passage walls—this turned out to be a mixture of calcium and sodium/magnesium sulfates—basically gypsum, thenardite, and blodite as per X ray diffraction results. The white needles and hair-like fuzz on the passage walls also were a mix of these evaporites.

One of our goals on the trip was to take samples of the crusted floor in Snowy Creek and the white minerals that were coating underwater rocks in the cave pools. The cave, however, had other ideas. Although on the September 2020 trip the floor was muddy with several pools in it, on the April 2021 trip a small but vigorous stream flowed into the upper entrance. As a result, the entire passage floor consisted of shin to knee-height boot sucking sticky underwater mud that slowed our forward progress. We measured the water temperature in the cave at 10.5 degrees C and with a good breeze blowing through the cave, we were pretty chilly. When we got to where Snowy Creek should have been, all we saw was wall to wall water with deep mud below—no floor crusts, no underwater sulfates, nothing to sample. When the water and mud got to be thigh deep, I took one last water sample and that was it.

After getting home I sent two water samples to my local water testing lab at Colorado State University. One was from a seep about 300 feet above the cave entrance and the other was taken from 600 feet inside the cave. The results for both were about the same: the water was moderately saline—about 4400 ppm sodium and it contained a lot of sulfate—6600 ppm. This is not water that you would want to drink! We think that what’s happening is that the pools of water in the cave evaporate in the summer and fall and as they do, the concentration of these ions increases until the pools are saturated. As that happens, the sodium sulfate minerals that we’re seeing come out of solution and crystallize under water. This is pretty unusual but then a 1,000 foot long stream cave in shale is also unusual.

Carol Hill and Paolo Forti are the authors of *Cave Minerals of the World* and as the experts in this area, I asked them about what we’re seeing. Forti wrote back saying: “I am rather sure that up to the present, no printed speleological news exists referring to subaqueous deposition of very soluble sulfates underwater”. So with confirmation...
that we may be looking at something new in terms of evaporites forming underwater in caves, more samples will be taken and analyzed, the chemical reactions involved will be sorted out, and we'll see where it all leads.

Aside from the minerals, we also want to answer other questions about the cave; e.g., how old is it? There's no stal to date in a shale cave, so instead we’re looking at local gully incision rates as measured by the USGS and estimating how long it would take for the passage to grow to the size that we’re seeing--our best guess is something on the order of 6,000 to 12,000 years, but as with the mineral analysis, more work needs to be done here. Fun exploration and cool science– neat stuff.

Finally, we returned to the cave in September 2021 and again in May 2022, hoping that it would be as dry as it was on our first trip but alas, the little stream flowing into the cave persevered, thanks to a strong monsoon season in 2021. So, to date we’re unable to see or collect the minerals that we saw on our first trip. Some year, perhaps, it’ll dry out but for now, we’re literally trading water in there, waiting for the entering stream to go away.

Our study of this and other caves in the Gunnison Gorge National Conservation Area (and also the Dominguez- Escalante NCA) is being conducted under a three year Research Agreement with the U.S. BLM Office in Grand Junction.

Above: Doug in the canyon passage
Facing page, clockwise from upper left:
Doug taking a water sample;
Stream passage showing some of the iron oxide minerals;
Doug wading in the stream passage;
Carol sketching in Snowy Creek.

Right:
Orange iron oxide mineralization and sulfate mineral band at waist level

Sulfates in the stream and right, other sulfates growing on the walls. See text pages 4-5 for more about these.
Rock Pigeon Cave
Gunnison Gorge National Conservation Area
Montrose County, Colorado

DISTO X2 SURVEY BY:
Ed LaRock, Doug Medville, Bob Richards, Carol Vesely

SURVEY LENGTH: 1058 feet (322.5 meters)
VERTICAL EXTENT: 113 feet (34 meters)

GEOLOGY: Cave is developed in the Cretaceous Mancos Shale

©2021, GGNCA Cave Project
Cartography by: Doug Medville and Bob Richards
Lidar Lead 12
by Ryan and Liz Hoffman, with editing by Michelle Cousin; photos by Dan Straley

Lidar Lead 12 Cave was discovered on 9 Feb 2020 while conducting ridgewalking on the Bennet Tract of the newly acquired land in Florida Caverns State Park in Jackson County, Florida. The property was purchased by the park in May 2017 in part due to the presence of two state-listed endemic cave species: the Georgia Blind Salamander (*Eurycea wallacei*) and the Dougherty Plain Cave Crayfish (*Cambarus cryptodytes*). The park requested that we inventory the property for caves and karst features and to survey the caves on the property. After the initial visit to the property to get the lay of the land in late 2019 I downloaded LIDAR data for the area and began looking for possible leads. After getting the LIDAR displayed on my computer, I began marking locations that looked interesting. I came up with fifty-seven different LIDAR leads on the property of differing quality.

The first few trips to the property involved locating the known caves and remapping them to the current standard including using distoX2, tablets, and modern GPS. This was not as straightforward as it may seem, as the property where the caves are located is all forested and after Hurricane Michael came through, about 90 percent of the trees got blown down. This created a huge mess and just walking a few hundred feet into the woods required an almost parkour event. It was normal to have to climb and walk on downed trees sometimes 10-15 feet in the air just to make progress. Luckily, the early trips were done in winter, so the undergrowth was not very thick in most places. We worked the known area first and rediscovered and remapped the three known caves, and also created overlays showing the park just how close two of the caves are to each other. We also extended Bent Tree cave to three times its previous reported length by crawling through some really small low passages. The early trips included members of the Flint River Grotto with Allen Mosler, one of the original explorers, leading the charge using his experience of the area from the early days to help us in the remapping and also with questions about what the caves looked like years ago.

After we finished mapping the known caves on the lower part of the hill, we started the process of looking for new caves using my 57 lidar points. A lot of the points turned out to be old limestone quarries or just natural drainage ditches. With each point we looked at we became increasingly tired and disappointed due to the extremely arduous work to get to each point. In the early afternoon of the 9th of February I was following my GPS to one of points and what I found was a small limestone bluff about 2 feet high with a few small openings that where heading down. The most promising opening was about 2.5 feet wide but only about six inches high; but just above the opening was a small fern that was holding on for dear life in the wind of the warm cave air exhaling into the chilly winter Florida afternoon. I said to myself that “If it blows, it goes” so I started removing dirt at the bottom of the opening until I got it wide enough to get my head into. I could see that it went down at least 10 feet to a small ledge and that it was going to be passable but being alone I decided to get help.

I returned to the cars and let Allen know what I had found. I said we would need vertical gear and he told me he brought his caving ladder, so armed with his ladder, he followed me 250 feet from the cars to what I had found. We set up the ladder and dropped it into the hole and it disappeared around a small ledge 10 feet down that I had seen. Allen told me that having found it that I could go in first. I slowly slid down the freshly dug dirt hill until my feet hit that small ledge about 10 feet down. Once on the ledge I looked around and saw that the passage continued down a few more ledges and about fifteen more feet to a large room. I continued down and before long I was standing at the base of the breakdown entrance and looking onward, I could see going cave and actually for Florida, really big cave.

The Entrance tunnel is about 35 feet wide and tall enough to...
walk without crouching so Florida Borehole. I yelled to Allen that it looked really good and that he should come down. He climbed down and was amazed at what we had found. Discoveries like this in Florida do not usually happen above the water table. Due to the fact this was a ridge walking day we did not have survey equipment with us, so we scooped the first 200 feet of cave until we reached a very decorated section that went around a corner. From there I noted a low water lead on the left and then continuing formations on the right with plenty of other good leads to check on the next trip. While heading out we marveled at two water-filled pits in the floor in the center of this passage. We could see visible ledges of more passage underwater, and it made me wonder if diving gear would be necessary. This cave, unbeknownst to me at the time, was my biggest discovery and I wanted to see more and soon.

Unfortunately, however, further exploration would have to wait. The next week I took a trip to southern Florida to visit my wife, Liz. After that I had a work trip to Washington State to transport a new aircraft back to Alabama. Well, I got COVID-19 while on that trip and ended up not feeling great for the next few weeks and it’s also the same time the whole country shut down. So, more waiting until the next time I could get back to the cave. COVID also made it hard to bring larger groups to the cave to help survey; most of the survey trips were with the same small group usually Me, Liz, and one other person.

The cave is broken up into a few distinct parts with the front half being the only part accessible during the first few months of our project due to the river level. The cave is only about 1700-1800 feet away from the Chipola River, which in the winter months usually sits at about 12-16 feet on the river gauge in Marianna. Because of this river level the only part of the cave we could explore was the front 1300 feet. We surveyed that in about four trips from the 1st to 22nd of March 2020. After the first 200 feet of large Florida borehole that we originally discovered there were parallel crawling passages that have multiple interconnecting passages. The cave is highly decorated with a lot of fossilized seashells, soda straws, and helictites. We also discovered sharks’ teeth and a large breakdown room. After surveying all the dry passages, we noted at least three spots the had water-filled passages that looked like they could go. I had even stuck my whole body into the water to feel with my feet to see if I felt an end, and I did not.

The next few months we spent surveying and exploring the other large cave systems in the area to produce accurate overlays to provide to the park and inform their management decisions. We even discovered one room that was under a newly erected radio tower that had fresh breakdown in it. Had we been able to do the survey earlier we could have saved that room from being destroyed. Luckily for the heavy equipment operators that put the tower up the ceiling held, and they did not fall into a new sinkhole. The whole time we explored the other caves I was constantly watching the river gauge. Occasionally we would go back to Lidar Lead 12 to check the water-filled passages to see if they were passable.

The early hot summer with limited rains helped to drop the Chipola River below the necessary level to about 7 feet and on the 4th of July I decided to give Lidar Lead 12 another go to see what was beyond those water-filled leads. We entered the cave and proceeded to head to the water-filled leads at the end of the borehole passage. On the way we passed the two large holes in the middle of the passage, and we would see air below the previous water-filled passage. I got to the lead and could see the ceiling ledge had at least 2 feet of air above about a foot of water underlain by really thick mud. Not knowing what would happen, I dropped into the mud and sunk to my knees. Below the ceiling I could see going passage in two different directions. One way went back underneath the borehole passage I was just in, but the other way headed off the known map. That is the way I went. I crawled/wallowed in the mud water for about 50 feet until the passage took a right turn and the ceiling began to drop. Hoping that the cave would open up I pressed on as both the water and the ceiling inched closer together. Up ahead I could see what looked to be a ceiling ledge where the passage got taller, so I pressed on. After about 100 feet of thick, soupy mud, I reached the ledge and looked out into the biggest room I had yet to find in the cave. I stood up and looked with amazement at the room that was just beyond what is now called Water World. It was about 80 feet long, 40 feet wide, and at least 15-20 feet tall. There was a large breakdown pile to my left, so I climbed it and, in the distance, could see an exceptionally large all-white flowstone haystack at the end of the passage. I also noted too many leads to count. I returned to the hole I had dropped into to report what I had found to my team. We surveyed the water passage I had taken then began to survey the large room. There were so many leads that it was hard to decide where to go next. We finished the large room and started to survey some small crawly leads just off the main room, leaving the larger of the leads for later.

We returned the following day and started to systematically survey the left wall of the large room and soon discovered the highly decorated Rotunda Room. While the number of fossils and helictites in the ceiling are impressive, the columns and huge stalagmites that continued to show a shift that had happened in the area some time ago in past millenial that can be noticed throughout the cave are especially so. We then found the most exquisite formation room in the cave, later named Crystal Garden, where almost 70 percent of the floor is a gypsum flowstone with delicate helictites above. This circles around some large white columns and leads to another room with the ceiling covered in helictites. On our way out of this area we also found some animal scratches on rocks to signify a possible spot where racoons can access or are washed into. Back into the Rotunda Room, as we were surveying the way out, Liz noted that the crack in the ceiling that was dripping with stalactites that left a large rock below it covered in stalagmites was a possible hallway. We followed this and found 3 more smaller rooms, one not much more than a spot to stand. The next one had some bones fossilized in flowstone with a small helictite-filled window. The other had a fresh breakdown pile which if touched with even your bum while crawling would crumble a bit and small pieces would fall. We climbed it as high as seemed prudent but then stopped as it continued to be unstable, and we had reached a top that we could not see a way past. Due to the unstable nature didn’t want to push too hard around the bottom.

Over the month of July, we returned multiple times, surveying new cave, trying to find the end before the river came back up. On the right lead after the first large room beyond Water World there’s a lot of hands and knees crawl passages and we kept running into to-tight ends to the small passages we were exploring. On the 27th of July on our fifth survey trip beyond Water World my friend Ben Martinez was helping me survey and while I was busy sketching some very unpleasant tight crawls, he came back from a recon telling me that he found something amazing. Having to survey up to what he found took about 30 minutes, but it progressively got more pleasant. From a muddy belly crawl to a hands and knees crawl and then even a stoop walk, we came to a ledge overlooking a large pool of water inside what looked to be an exceptionally large room. We had discovered Ben’s Borehole. Being late in the day, we wrapped up our survey there but couldn’t wait to get back. We returned the following weekend to start the survey of Ben’s Borehole. The first room alone was 80 feet wide by over 100 feet long and had going passage on either end. Using digital survey, we could tell that one direction went back towards known cave, so we chose the other direction and went about 100 feet, then crawled under a line of formations where we found ourselves at
Left: echinoid and shell fossils and above, pool spar

Left: Lisa with a great white shark tooth, detailed above

Rimstone pools with lilypad-style shelfstone

Plethodon sp., likely a white-spotted slimy salamander
a 4-way intersection of borehole just as large and impressive! We chose left and proceeded to survey about 200 feet of passage averaging 35 feet wide and 10-12 feet high. The whole floor was covered in gelatinous mud in which you would sink up to your knees, which you can imagine makes for an interesting walk. This passage terminated in a fresh breakdown hill of rocks that we couldn’t find a way through, but there were side tunnels on either side of the main passage. We explored the left tunnel first and it terminated in another room with crystal formations and mud-covered breakdown in it. We left all the leads on the right for the next day.

The next day we rushed to get to the 4-way intersection we had discovered the day before. We went straight this time into a passage of equivalent size that paralleled the first tunnel. We followed that to a bend where it turned right and headed away from the other passage. Here we could hear a flowing stream and followed the sound of it continuing until we discovered the largest breakdown hill I have seen in a dry Florida cave. It was very unstable, and the rock was a white chalk consistency with large cracks everywhere. I climbed as high as I dared but didn’t reach the end. It got way too unstable and tight, and if you know Florida Caves you know collapses are more common here than other caves, due to the heavily fractured limestone in the caves. I climbed back down to look at where the stream passage appears in the cave flowing out of the bottom of the breakdown pile, then travels through the cave in areas sometimes too tight to traverse, and eventually coming out in Water World. After Water World it flows towards the entrance and the Chipola River. There is a small known spring on the river that lines up with the flow of the water going through the cave and although it has not been dye traced, I suspect the water that flows through the cave exits at the spring—although it may flow into the river at some yet unknown location.

We did five more trips to finish mopping up the survey, discovering a few other cool areas including an extremely low crawl that led to another quite large room where we saw a field mouse and had a lot of large columns, leading to another breakdown pile. The back wall of this room has a couple very small 4-inch holes that may lead to more, but we pushed every lead that we could as far as possible, and my wife Liz can pass 6.25 inches, so we didn’t leave much to be found.

Through our survey we did see many creatures the most notable being the Georgia Blind Salamander and cave adapted crayfish. There are also a few solitary bats that inhabit the cave and there is evidence that during flood periods bats have been trapped behind the sump and drowned. We found the skeletons of two different bats clutching to speleothems in an almost “last stand” location before the rising water took away the last air space. The total project included well over sixteen trips and hundreds of hours both in the cave and on the computer producing the maps. With extremely limited ability to travel during the Covid-19 pandemic Lidar Lead 12 cave was more than likely one of the things that kept a lot of the 13-plus people involved in the survey and exploration sane. Due to the discovery of the imperiled species, the cave has been filed for restricted access to only include scientific research. It is currently managed under the cave management plan of the Florida Caverns State Park and the state of Florida Department of Natural Resources.
Lisa admiring a pristine rimstone pool

The Haystack, one of the largest stalagmites in the cave

Separated columns

Lisa admiring a pristine rimstone pool
3OG: Another deep cave in The Bob Marshall Wilderness?

Bob Bastasz, Mary Alice Chester, Edd Keudell, Mike McEachern, and Ron Zuber

Three Old Geezers Cave (3OG) was discovered in 2008 and initially explored in 2009-2010. 3OG might be another deep cave in The Bob Marshall Wilderness of Montana. We describe the area, trips to the cave in three successive years, and some recent data about the cave’s hydrology.

Introduction

The Bob Marshall Wilderness, or “The Bob” as it’s often called, is located in western Montana and contains over a million acres of mountainous land managed by the US Forest Service as wilderness. Thrust faults characteristic of the area expose massive limestone cliffs dotted with tantalizing cave entrances. But access to The Bob is difficult, as travel is strictly nonmechanized, snow blocks trails part of the year, and forest fires have become more frequent in the summer. Although interest in the area has grown in recent years, caving has been limited and much remains to check out.

In three successive years starting in 2008, Ron Zuber organized expeditions into a lesser-visited area of The Bob. These were so-called geezer trips, as some of the cavers were a bit long-of-tooth, although still relatively hale, hearty, and definitely enthusiastic. Embracing a geezer mind-frame, it was as important to enjoy being together in remote wilderness as it was to find and explore new caves.

The location Ron selected was east of the Chinese Wall in Grizzly Gulch, a high-elevation karstic area not known to have been searched for caves in the past. A number of caves were eventually found, but most were plugged with snow or with breakdown a short distance from their entrances. One exception was a cave christened Three Old Geezers Cave (3OG) by the discoverers: Jim Chester, Mike McEachern, and Ron Zuber. 3OG is a swallet with entrances through which a stream disappears underground. It’s an active solution cave, with flowing water and a vertical character. After 3OG’s discovery in 2008, trips in 2009 and 2010 focused on exploring it.

The 2008 Discovery Trip

In planning a 2008 summer exploration, long-time cavers Jim and Ron asked the same question they asked each other time and again: “Where are we going this year?” Ron summarized their deliberations in the May 2009, NSS News:

Continuing with tradition, we contacted old friends, our trusted experts, for consultation about where to go looking. We had some ideas as we talked with caver/geologists Newell Campbell, Mike Kaczmarek, and Hans Bodenhamer. They have decades of field experience and proven records for finding caves. It’s safe to say these friends are among a small group responsible for the large number of known and explored caves in Montana. It’s been a long-running conversation in progress for years. Chester and I and many other cavers have followed leads from a variety of other fine sources and a few characters. Besides geologists, cave leads have come from ranchers, cowboys, miners, guides and outfitters, forest rangers, newspaper articles and reporters, airline pilots and a few sky-pilots. Some leads have panned out and some have simply provided nice, long hikes in the wilderness.

Slagetoft Mountain (not to be confused with the nearby Scapegoat Wilderness) and environs were selected: Grizzly Gulch to the west and Pretty Prairie to the south — lots of alpine karst terrain. Mary Alice Chester, Mike Kaczmarek, and I with expert mountain pilot Nigel Davis flew the area. While drooling on the airplane’s windows I gleefully photographed easily spotted karst and cave features. What a Bonanza! This area just had to produce some excellent caves. Now all we needed to do is find ‘em.

Four miles to the west is one of Montana’s more familiar and one of the world’s classic geologic features, one that has given rise to some of its most spectacular landforms: the Lewis Thrust Fault. Part of this landscape is known as the Chinese Wall. The mountains along the fault are collectively known as the Overthrust Belt, consisting of long limestone ridges running north-south.

We began planning in earnest. We decided to field two autonomous teams: (1) Dennis Gordon, Tom Stevenson and Mark Turner (the “Bear Creek” contingent) and (2) Warren Anderson, Bob Bastasz, Nancy Boice, Jim Chester, Mary Alice Chester, Edd Keudell, Mike McEachern, Marcel Robischon, and myself (the “Glenn Creek” group).

We hoped using two teams would help to find a good route into the cave search area. The Bear Creek team took advantage of an established trail part of the way,
although the distance to the base-camp site was longer. The Glenn Creek team’s route was more direct, but involved bushwhacking for miles up the creek drainage. We guessed that if a Glenn Creek ‘trail’ existed, it hadn’t been maintained since the Wilderness Preservation Act was passed back in 1964 (The Bob was one of the first four wilderness areas included in the act).

After a comfortable boat ride across Gibson Reservoir, saving us the first seven miles of hiking, the two teams split up at the K-Bar-L Ranch, whose motto “Beyond All Roads” emphasized its location close to the wilderness boundary. The Bear Creek team hiked via a trail to Bear Lake and camped before striking out cross country. The Glenn Creek team followed a trail up the Sun River to Glenn Creek and camped before heading up the drainage. Our expectation was to reach base camp the next day. Not surprisingly, it took each team another two days to get there. We reunited at a lovely alpine meadow, our base camp, and at last we could begin to hunt for caves.

We found lots of cave leads during the next several days, but none had going cave. On one of the last days of the trip, the three eldest geezers

(Chester, McEachern, and Zuber) took off to explore the head of Grizzly Gulch. They were late in returning to camp and when they finally showed up it was clear from their excitement that they had found a good lead. Ron described it:

We discovered a small walk-in entrance with a stream flowing into it. The opening appears to take in a large amount of water during spring thaw. A short distance into the cave, we came to a twelve-foot pit with flowing water. The sound of running water was a strong enticement, but without vertical gear, we could go no further.

A name for the cave almost suggested itself to Jim, Mike and Ron: Three Old Geezers Cave. At camp, plans were hatched for a return trip next season, bringing ropes, gear, and more supplies for a longer stay to explore and survey 3OG.

Initial 3OG Exploration in 2009

It was clear from the discovery trip that a different approach would be needed to efficiently get to 3OG and explore it. First off, the Glenn Creek route involved too much bushwhacking. Second, a new base camp closer to the cave was needed. Third, and most important, we’d need help to haul in adequate gear. After much dedicated work by Jim and Ron during the early months of 2009, arrangements were made with Sun Canyon Outfitters for a string of pack mules. Their senior packer expressed some interest in getting into the area, saying that, as far as he knew, “nobody’s packed into Griz Gulch for 40 years…”

In late August, nine of us (Bob, Dennis, Edd, Jim, Mary Alice, Mike, Ron, Tom, and new young-member Adam Zuber) dropped off our gear with the outfitter and started in using the always-a-treat boat shuttle across Gibson Reservoir. At the K-Bar-L ranch, instead of heading north along the Sun River, most of us headed south, connected with the Bear Creek trail, and followed it to its end at Bear Lake. With lighter packs this year we made good time. As we hiked up the trail, we marveled at the abundance of Beargrass, which blooms in profusion once every few years. After camping at the lake in a thunderstorm, the next day we ascended the high ridge west of the lake and descended over spectacular karst terrain into Grizzly Gulch. At our new base camp, we awaited the packer and were jubilant when the mules, loaded with our gear, showed up.

We had with us two early versions of the DistoX (described in Alpine
Karst, vol. 4 (2012)) and were anxious to survey and map as much of 3OG as possible. Progress in 3OG was slow, as it is a cold, vertical alpine cave. Ron documented our efforts in the September 2010 NSS News. As he summarized, “exploration was stopped with great looking leads ahead and below.”

Besides 3OG, we wanted to cover the area looking for other caves. It’s not hard to find sinks and openings in this terrain. Most sinks are choked with breakdown and would require a major effort to open up. Cliffside openings appear to be more clear of debris. A number were noted, but only two were entered by rappelling and didn’t lead to passage. We did map two small caves, 3 Geeks and One-piece-at-a-time, which are described in Edd’s September 2010 NSS News article.

Exploration and Sadness in 2010

Bob and Mike decided to take a long route to Grizzly Gulch in 2010. Their caving gear was packed in from Gibson Reservoir on the east side of The Bob with the rest of the crew. They hiked in from the north side of the wilderness. The 34 mile route starts at the edge of the wilderness on the Spotted Bear River, goes past the Silvertip Cabin, follows the river, and crosses over the continental divide at Spotted Bear Pass. One of the goals of the trip was to check out the area to the north of Redhead Peak and locate a possible campsite for a future expedition. There are a series of large sinks visible a mile east of the peak, on Google Earth, at elevations between 8100 and 8200 feet. With the base level at Rock Creek at 5800 feet, there’s possibly a 2400-foot deep cave system waiting for exploration. One approach would be from the continental divide where an old, unmarked trail leads to Three Sisters Peak. Heavy tree fall at the start required much bushwhacking. Farther on the trail was better with only occasional dead fall and led to a meadow with water and good camping.

The highlight of the approach was twelve miles of trail along the base of the 1000 feet high Chinese Wall, a huge block of Cambrian age limestone which was pushed over younger rocks along the Lewis Thrust Fault. Unfortunately the top of the wall was obscured by clouds in the morning but later in the afternoon they were able to observe openings in the cliff. From the Continental Divide Trail they bushwhacked over to Grizzly Gulch and hiked up the gulch, stopping by a possible resurgence previously identified in 2009, and placed a dye trap.

Completing the long route in, Mike and Bob met up with the rest of the group at camp. Altogether there were thirteen cavers on the 2010 trip, with Dave Brown, Matt Cavanaugh, Linda Gough, Jarid Kroes and Emily Zuber joining returning expedition members Adam, Bob, Dennis, Edd, Mary Alice, Mike, Ron, and Tom. Jim was having health problems and had to forgo this year’s trip.

The main aim of the 2010 trip was to continue mapping and exploring 3OG. Getting 3OG to give up its secrets was not easy. The first obstacle was the entrance: this season it had become blocked by ice. Spending perhaps days chopping through the ice was a dismal prospect, but fortunately, a dig in nearby Contact Cave
connected to 3OG and became known as “the ice plug bypass.” At the connection a 32-foot pit dropped into a pool. A narrow passage continued leading to several small pits. These yielded a little less than 1000 feet of passage. Dave, Linda, and Edd continued until they were stopped by a sloppy mud crawl. However, beyond a blade that blocked the way, there appeared to be clean gravel and more open passage. Without a hammer, the crew exited the cave and 3OG was left for future cavers to explore.

A prominent circular entrance near the top of Slategoat Mountain (8887 feet in elevation) had been an object of our attention since our first trip into the area. Dubbed “The Oculus” by Ron, the cave was reported by locals in Augusta to go through the mountain. Good weather finally provided a chance to climb the peak and check out the cave. By the time the group made the three mile, 2000-foot climb, a mountain thunderstorm started to roll in.

The short Oculus Cave, formed in a white band of Madison limestone, goes all the way through the high ridge. We got to sit in its cliffside entrance and look down at where we had camped two years before. Before the thunderstorm struck we were able to see miles and miles. All within that vista seemed to be limestone! We also saw a promising looking circular entrance on the south side of Slategoat Mountain. Checking it out remains on the to-do list.

After finishing our field work the group hiked out in two days following the packers’ route going east from base camp over a high ridge and down into the next valley. We then hiked south to meet the trail downstream from Bear Lake and followed it to Gibson Reservoir. As we approached the reservoir, we were surprised to see Emily and Hans hiking towards us.

Emily had hiked out two days earlier to tend to some work at home in Anacortes, Washington. There she learned of the tragic death of our friend Jim Chester, following heart surgery. She immediately turned around and drove all night to meet Hans in Montana. They then drove to Gibson Reservoir, found us, and delivered the sad news in person: one of the Three Old Geezers was no more.

A 2021 Surprise

In preparation for the 2010 trip, we obtained a couple dozen charcoal dye receptor traps from the Crawford Hydrology Lab at Western Kentucky University. Traps were placed in a surface stream near the cave, a nearby spring, and at a suspected resurgence far down Grizzly Gulch. Adam and Emily released fluorescein in flowing water inside the cave. The traps were collected and exchanged with new ones at various intervals over the next few days. Unfortunately, the exposed traps languished in Bob’s garage for years. He had planned to get the samples analyzed soon after the 2010 trip, but doing so kept getting delayed and eventually the dye traps were forgotten.

The situation suddenly changed in the summer of 2021 at the Speleo-Ed Western Regional Meeting (the excellent surrogate to the 2021 NSS Convention) in Weed, California. At the meeting, Mike and Bob attended a dye-tracing class given by Pat Kambesis. In talking with Pat, Bob remembered the old dye traps and asked her opinion of whether or not they could still be worthwhile to analyze. She said possibly, especially if they had been sitting in the dark, as fluorescein degrades in light, and encouraged us to contact the Crawford Lab. Back in Montana, the errant samples were located and arrangements to have them analyzed were made with Lee Anne Bledsoe at the Crawford Lab. Bob anxiously awaited the results (curious how one could be anxious after a decade’s procrastination).
No dye was detected in any of the surface stream, spring, or control samples. But there was a surprise – one of the samples placed in the surmised resurgence gave a positive response! After discussing the results with Lee Anne, we decided it would be worthwhile to run a duplicate sample that had been collected. This was done in short order and a strong signal was detected as before. So it appears that the dye released inside 3OG made it to the resurgence, indicating that there is a hydrologic connection between 3OG and the bottom of Grizzly Gulch.

Our dye tracing results indicate a potential for another deep cave in The Bob. If 3OG could be traversed from entrance to resurgence, its depth would exceed 1000 feet. But whether or not 3OG can be pushed remains to be seen.

The resurgence is both foreboding and enticing. A stream exits from a deep erosion gully with an opening (in 2010) of about 6 inches. A short time was spent trying to enlarge it by moving rocks and scooping out gravel. It was rather easy to get a few more inches of clearance. If the resurgence could be cleared further, a stream crawl might be possible. It’s worth noting that the resurgence is located at the contact between limestone and reddish-hued argillite, which must be less permeable. Perhaps the cave has developed along this contact. If so, it would be interesting to follow the contact up from the resurgence to look for other cave entrances.

Some GPS elevation measurements were made at the top of the cave hill and at the resurgence. The top is at 7687 feet and the resurgence is at 6246 feet. So the depth potential of 3OG could be as much as 1441 feet. Of course, a hydrologic connection does not mean a connection accessible to cavers. But it is an intriguing possibility and 3OG seems worth revisiting to take a closer look.
3 Old Geezers Cave
Lewis & Clark County, Montana

A DistoX Survey
7/15/09 & 7/16/09

Surveyed by:
Bob Bastasz, Edd Keudell,
Mike McEachern, Adam Zuber
Surveyed Length: 942.3 feet
Surveyed Depth: 178.5 feet

Lineplot - Winkarst 12.5
Drafted - Adobe Illustrator CS4
© 2011 Mapperhead (Edd Keudell)
I’ve loved reading articles in the NSS News since the early 1970s. And I especially love looking at the photos. Since I am a visual person I’ve assembled some of my photos to help illustrate the 3OG story. Here they are in what I call a Pictorial Essay.

Left: Jim Chester at the entrance of Three Old Geezers Cave during its original discovery in 2008. Chester, McEachern, and Zuber enjoy this cave as a prized discovery by three old geezer cavers.

Right: Mike McEachern approaches the Grizzly Gulch resurgence, which was found to be hydrologically connected to 3OG.

Right: Bob Bastasz and Ron Zuber clearing the resurgence. It was an unsuccessful attempt to create an enterable space for a caver to pass through.

Left: Emily and Adam Zuber place fluorescein dye in the stream inside 3OG.

Below: Slategoat Mountain with Bob Bastasz and Mary Alice Chester. Oculus Cave is just below the summit of the middle high point, 8887 feet in elevation.
Bob Bastasz on the hike to Oculus Cave, the dark spot just below the summit of Slatengoat Mountain. Other prominent openings on the mountain's face were not checked.

Oculus Cave, south cliff-face entrance. Access is by climbing the peak and then down climbing to the north entrance.

Mike McEachern collects one of the dye traps placed below the resurgence.

The 2010 Grizzly Gulch team. Standing from left: Ron Zuber, Adam Zuber, Edd Keudell, Matt Cavenaugh, Linda Gough, Dave Brown, Bob Bastasz, Jarid Kroes, and Dennis Gordon. Sitting from left: Emily Zuber, Mike McEachern, Tom Stevenson, and Mary Alice Chester.

Adam Zuber rappels and moves laterally with verbal instructions from cavers below to the entrance at the lower left. Rotten rock and rope position precluded a safe ascent, requiring a down climb to get off the face.

Oculus Cave, south entrance. Emily and Adam Zuber having a ball.

Mike McEachern collects one of the dye traps placed below the resurgence.
Flashlights For Supplemental Illumination When Caving

Jeff Cody NSS 23961

We all remember the term “flashlight cavers” referring to neophyte cavers. With modern advances in LED and battery technology I feel that is now a dated term that no longer applies. Many cavers now use smaller single 18650 flashlights mounted on the side of their helmets as backup lights. I never really did that but have caved with many who did. This write-up will feature a few smallish flashlights slightly larger than ones people mount on helmets, with amazing output. Todays headlamps are getting brighter and brighter but even the most expensive and brightest headlamps will not come close to the output from these kinds of flashlights. These flashlights can easily be stowed away in your pack and used when needed for a longer range spot in large passages, tall domes and pits. Flood-specific flashlights come in handy for the growing number of cavers using a cellphone for photos when external flashes are not used. Here I will feature a few that I own and have been very impressed with. I review flashlights and headlamps for various companies. There are many more out there than I am capable of reviewing. Many out there that may have more impressive performance than these but these are all impressive for their small size.

First I will feature The Sofirn IF 22A spot long throw flashlight. Sofirn is more of a budget manufacturer but I have had good luck with them. Manufacturer specs claim a maximum beam distance of just under 700 meters. Pretty impressive considering the light is 5 inches long. Weight is 120 grams without battery. It comes with a Sofirn brand 21700 battery. This battery is a bit larger than the 18650 that many cavers use. It is 3 millimeters larger in diameter and 5 millimeters longer. The UI on this is a ramping mode on the switch. You turn the light on then press and hold the switch as the output increases and release the switch at desired output. It will ramp up to its max and flash then you can ramp back down to its low. The LED used is a single Luminous SFT 40 with a lifespan listed at 50,000 hours of services. Water resistance rating is 2 meter submersion for 30 minutes. Sample runtimes are 30 Lumen low for 41 hours and a spot distance of 91 meters.320 Lumen for 5.5 hours 257 meter max reach,1000 Lumen 2.3 hours and 482 meter reach and the max of 2100 Lumen for 1 hour and just under 700 meter beam reach. Like with most lights the high setting will step down due to heat after a minute or two. The cost is around 50 dollars and can be found on Amazon and other retailers. After using this tool I was very impressed with the spot range. One thing you will find in certain pits is the mist can dramatically reduce the advantage of high output spot lights like this. If you are planning a trip to a large passage cave or want to really see that favorite big pit this is the tool for you. I highly recommend this light.

Next I will go to the Wurkkos DL30 dive flashlight. Dive flashlights are an option for caving as well as sport tactical flashlights. This is a 3600 Lumen model that is only 5 inches long. It uses 3 Samsung LH 351 D LEDs. This will give you a respectable 90 CRI for color accuracy. It is powered by an included Wurkkos branded 21700 flat top. Also comes with an adaptor to use with high drain 18650s. It has a rotational switch like some other dive flashlights. Three output settings of 350 Lumen that runs for 6 hours, 1300 Lumen for 2.5 hours and the max of 3600 for 1 hour but likely interrupted with step down due to heat before the battery drains, especially if used above water. As I mentioned earlier this is a dive flashlight and rated to 100 meters according to its specs. The beam is a wide spot, wider angle spot than the distance throwers like the above described Sofirn IF 22A but only has a max beam distance of 240 meters but it throws out a lot of light. Price is around 50 dollars and currently appears in stock at Amazon. This is a really nice size light and will stow in your pack nicely and you do not need to worry about keeping it dry. If you do lots of wetsuit caving and get into large rooms or wet pits you may need some illumination assistance above the limitations of your headlight, this may be your option. It does not have a USB charge port as the lights comes with a basic single battery red light green light charger. Also I have found the slightly shorter flat top 21700S will fit in some of my tabletop smart chargers but the button tops are too long as I had to purchase a second charger for those. This is a great option if your headlamp generally gives you what you need but may in some situations find yourself in larger passages than usual or in a pit you want to see better.

Finally I will go to another optic type and feature a flood specific option. Now we have more and more cavers using cell phones to take good cave photos. Remote flashes are the best way to photo caves. If you do use the cell phone sometimes a wide angle flood with no hot spot may help with cellphone photos and videos. The Acebeam EC65 is an excellent choice for flood. This light has the option of either 3 Cree XHP 35 Hi LEDs for a 4000 lumen max or three Nichia 219 LEDs for a 2500 Lumen max but you get a higher CRI for better color accuracy, best for photos. I got the Nichia version. This throws a beautiful wide angle with no hotspot. Not a far reaching beam like the first two I described but will fill many cave rooms full of light with a nice even spread. Very impressive for its small size. This light does have a rubber covered USB charge port and rated for 2 meter submersion for 30 minutes. This light comes with an Acebeam branded 21700 and a tube to use a high drain 18650 or it will also run at a lower output on two CR123S. Outputs are listed using the 21700 battery, 20 Lumens for 4 days, 250 Lumen for 7.8 hours, 500 Lumen 3.2 hour 1400 Lumen for 4 minutes and the 2500 max for 1 minute intervals due to heat. Using it for photos you do not have to have it on max for long. This light is more expensive than the previous two at 125 dollars. Also, Acebeam may not have these in production anymore. I have seen them on EBay but not on Acebeam site or on Amazon. They did replace it with a EC70 model that I have yet to try. Another nice option of similar specs for this same purpose and half the price is The Sofirn IF 25. I feel these types of lights will be more of a need with so many using cell phones photos in caves.

These are just three, there are many, many more that may very well be better but of the ones I have got my hands on these three really stand out for the purposes I
TINA O’HAILEY

DARK DRINK
by Tina O’Hailey. Published by Black & Rose. ISBN: 978-1-68433-977-8 $22.95

On the surface, what’s not to like about Tina O’Hailey’s latest novel, DARK DRINK? Jude, the heroine, is a caver who rides motorcycles, sticks up for the afflicted, and mixes a wicked cocktail on her viral blog. However, the story quickly becomes much darker…and not because of the caving.

DARK DRINK is a whodunit story of an abusive childhood and the twisted stalker who turns up later in life. O’Hailey (NSS-57416) peppers her second novel with a several realistic caving scenes: Who hasn’t rappelled a pit on a too-short rope? TAG cavers will recognize locations – from the campground to the caves. However, this is not a caving book or caving story. It is much more a suspense novel.

O’Hailey, an animation professor who has worked for Dreamworks, offers a realistic look at the tech-savvy and the Luddites they must work with. The book switches narrative points of view with little warning. Be prepared to have Jude’s best friend, a computer geek, take over the tale and then return the story to Jude with little warning.

Yet there are comfortable landing spots at the end of each chapter when Jude shares the exact recipe for her latest cocktail. While you might skip the Fuzzy Bunny, I defy you to ignore the recipes for Apple-Pie Moonshine, her Bible Belt Cocktail or Pain Killer. The Lady Finger drink has a bizarre connotation in the book.

Anyone who has wanted to abandon the work-a-day life and move to cave country will appreciate Jude’s impulse to move to Tennessee. And anyone who is looking for a page-turner will be glad they grabbed O’Hailey’s latest work.

Curt Harler

CAVING WITH MITCH

Announcing the publication of a new book, Caving with Mitch, by Francis E. Abernethy. The 80-page book with color covers is available as a free pdf to download at https://cavelife.info/cuevashistoricas/

I am the editor of the book, which is the first number of the new online journal, Cuevas Históricas (Historic Caves) on my website https://cavelife.info/. It will be followed by other works about caves, especially lost or forgotten cave maps and descriptions that have been rescued from oblivion.

Caving with Mitch is the true and humorous adventure story of three great friends, Francis E. Abernethy ("Ab"), Robert W. Mitchell ("Mitch" or "Bob"), and William L. Rhodes ("Dusty"). They were active at the beginning of American caving in Mexico. Only Dusty survives today.

You will read about their famous trip to Sótano de Huitzmolotitla in 1960, where they descended the 344 ft. (105 m) pit on a cable winch that they engineered. This was before single rope technique was adopted by most cavers. Their methods improved as they made more research trips. From 1959 until 1977 they periodically explored caves, canyons, natural history, biology, Mexican culture, and made many friends. They developed a deep love for Mexico and Belize.

A run of 50 to 100 printed books are for sale by subscription for a short time. The books will be perfect bound with glossy covers and a spine. I am collaborating in this publishing project with Linda Mitchell, Bob’s widow, Sharon Mitchell, Bob’s daughter, and Dusty Rhodes. A few books may still be for sale after July 31.

To order one or more printed books, please contact Linda Mitchell at linda@glassmitchell@gmail.com and copy me at speodesmus@gmail.com. Payment will be by Venmo or PayPal to Linda’s email, no checks or cash. Include your full name, street address, email, and phone with your email order. You will send the payment at $20 per book, and we will acknowledge your order. Your purchase includes media mail postage to the 48 contiguous US states. You must pay to reserve a book. Please contact Linda about the additional mailing cost for addresses outside the lower 48 states.

William R. Elliott
The Carbide Dump
Blue Ridge Grotto
June 2022, Vol. 57, Number 6

Alex Fauce joined Dave and Nick Socky for a ten-hour survey trip into the McClung’s section of the Great Savannah Cave System. The trio focused on exploring minor leads near the First Breakdown knowing that only 470 feet were needed to push the cave past the 51-mile mark. With 530 feet put in the books the cavers emerged from the cave successful. The Great Savannah Cave System is now over 51 miles long with no end in sight.

Southwestern Cavers
Southwestern Region of the NSS
May-June 2022, Vol. 60, Number 3

The May rendition of the Fort Stanton Cave Study Project was extremely busy with several above and below ground activities happening over a six-day period. Several trips were taken into Fort Stanton itself for minor survey projects and to collect samples for a water research study that is being conducted by Riley Drake. In total 33 cavers participated in the mini-expedition volunteering a total of 1,578 hours.

Note: Cover not featured as it was received as a hard copy edition.

The Northeastern Caver
Northeast Regional Organization of the NSS
June 2022 Vol. 53, Number 2

John Durham and fellow northeastern cavers have spent the past few years thoroughly exploring and mapping Vermont’s recently discovered Black Fly Pit. The 112-foot-deep cave resides in a line of sinks that are likely interconnected. Numerous projects within the cave have accumulated nearly 500 feet of traversable passage, however, tight blowing leads at the bottom of Black Fly are enticing cavers onward with the promises of more cave.

Steven Higham is actively exploring and documenting the caves of Tekoa Mountain in southwestern Massachusetts. Several small talus caves exist in the rock outcroppings of the mountain, most of which do not extend over 50 feet. Thus far Steve has located four caves with the hopes of many more, as significant portions of the mountain have yet to be examined.

The Speleograph
The Oregon Grotto
Summer 2022, Issue 442

Garry Petrie, Oscar and Ahrlin Bauman have spent several days exploring and documenting Green Cave, a 4,000-foot-long lava tube system in the Gifford Pinchot National Forest. In a cave riddled with numerous entrances and squeezes, the trio have had to dig and push through some grim passages to fully document their find. Side projects have also been visited during the Green Cave expeditions, with several other shorter lava tubes being mapped during more relaxed Green Cave project days.

Cover: Lake Cave during Winter rains and below, another image of Lake Cave from inside the newsletter.
2022 NSS Convention

Finally, after two years, we were able to attend an in-person convention in South Dakota. It was so nice to see everyone. The convention staff did an amazing job and good times were had by all. We were reminded that Covid will not be going away anytime soon, if ever. I am hopeful with the next couple of convention sites being not so touristy that we can sidestep some of the cases although we will never be able to fully avoid the possibility. This is our new reality and like the rest of the world, the NSS will do our best to negotiate it for the well-being of our members and communities.

At the NSS Convention, our newest and re-elected directors officially took their seat on the Board of Governors. The NSS is in very exciting times as we have the perfect mix of our long-standing members with a wealth of experience and knowledge combined with the energy and enthusiasm of our younger members sitting on the BOG. Nick Anderson has made the personal decision to step down as a director from the BOG after the Convention. He came in hot as a director and made a tremendous impact in the time that he served. We wish him well and I will certainly miss him. Dennis Melko has accepted the director position as Nick’s replacement. Dennis will serve until the next election. I would like to congratulate our incoming directors and thank our outgoing directors as I know it’s a huge commitment working with everyone.

An important note from our office gals: Calling ALL NSS Members!

Please help us help you!!

We would like to make sure our database is current. We all get busy with life and forget to update certain data such as your email address, phone numbers, and mailing addresses. We send most of our renewal reminders out via email which makes your email address vital data and helps to save resources.

Please visit our membership database at: members.caves.org. Please check your information and call the office for any changes that need to be made.

A few tips when using the database. Your login information isn’t the same format used previously in the members section of caves.org. You set your password for the new site. If you need help resetting a password, please call the office at (256) 852-1300 or send a message to the NSS Office at: nss@caves.org.

While in the database, verify your “member since” date. As mentioned in the last President’s column in the NSS News, there is a board act that your membership can’t lapse more than 90 days or your member since date is reset to the new date. Please keep this in mind when checking those member since dates. Your member number will always be your member number, and does signify how long you have been a part of the Society and we do appreciate you helping us with our mission to preserve and protect!

Membership

As of July 1, 2022, we have 7,845 members. That is a net decrease of 23 members from the June 1, 2022 membership stat of 7,868. I anticipate a spike next month as many renewed their memberships at the NSS Convention.

Looking forward to the future,

Kristine Ebrey
NSS President