The Wasatch Grotto is a chapter of the National Speleological Society, a national organization with over 12,000 members that encourages the study, exploration, and conservation of cave and karst resources. The NSS and member Grottos work to protect access to caves, encourage responsible cave management, and promote responsible caving.

Everyone is welcome to our meetings and to come cave with us!

Upcoming Grotto meeting:

Date: August 1st, Monday.
Time: 7pm
Location: Sandy Library 10100 Petunia Way (1300 E). Sandy, UT
Combined Meeting: Special NSS 60 year of service award.
Karst Areas of England and Wales by Larry Spangler.

Climbing Cavefish, Batman!

Researchers have found a blind cavefish that can climb waterfalls. No, I am not making this up. The New Jersey Institute of Technology featured this story.

This research is reported in a March 24 Nature Scientific Reports article, “Tetrapod-like pelvic girdle in a walking cavefish,” by Brooke Flammang, Daphne Soares, Julie Markiewicz and Apinun Suvarnaraksha. Flammang and Soares, assistant professors in the NJIT Department of Biological Sciences, were assisted with the research by Markiewicz, an NJIT post-baccalaureate research volunteer in the Flammang lab at the university. Investigator Suvarnaraksha is a member of the Faculty of Fisheries Technology and Aquatic Resources of Maejo University in Thailand. The full text of their article is available at www.nature.com/articles/srep23711.

Flammang studies fish locomotion at the New Jersey Institute of Technology, so she’s used to seeing fish moving on land. She wasn’t surprised to see one that could push itself over rocks and through water gushing like a fire hose. But other “walking” fish hop forward by leaning on their pectoral fins like a pair of crutches, or flex and shimmy to wriggle over surfaces. This one was taking steps, moving one of its front fins in time with the back fin on the other side of its body, alternating in a diagonal two-step like a salamander. Flammang was incredulous. “I was like, ‘Fish can’t do that,’” she says. “That’s ridiculous.”

Read more at: NJIT.com and at Wired.com

Climate change helps bats to spread their wings

Kuhl's Pipistrelle, from Springer.com
Kuhl’s Pipistrelle, from Springer.com

Climate change and spreading bat populations; what a topic! Europe is experiencing a impressive spread of the Kuhl’s pipistrelle and they think changing climate is increasing it’s habitable territory. Springer has the report:

The team collected 25,132 high-resolution records of where the bat occurred in Europe between 1980 and 2013. These were used in conjunction with various models to predict whether the colonisation of new areas over the years has been prompted by increased urbanisation or by changes in the climate.

When first recorded, Kuhl’s pipistrelle was typically found over large areas of North Africa, southern Europe and Western Asia. In southern Europe its distribution was originally confined to the Mediterranean basin. It extended east to the Balkans, west to the Iberian Peninsula and north to the Alps and western France. By the 1980s, the bat was also reported in northern France and Bulgaria. Slowly but surely it has spread to other countries, including the United Kingdom to the north and eastern regions such as the Czech Republic, Slovakia, Ukraine, Hungary, Romania, Bulgaria, Serbia and Poland.

Read it all on Springer.com

Prehistoric Man Had a Penchant for Tortoises

Remains discovered in Qesem Cave, near Tel Aviv, shows that early humans had a taste for turtles.

Tel Aviv University researchers, in collaboration with scholars from Spain and Germany, have uncovered evidence of turtle specimens at the 400,000-year-old site, indicating that early man enjoyed eating turtles in addition to large game and vegetal material. The research provides direct evidence of the relatively broad diet of early Paleolithic people — and of the “modern” tools and skills employed to prepare it.

The research team discovered tortoise specimens strewn all over the cave at different levels, indicating that they were consumed over the entire course of the early human 200,000-year inhabitation. Once exhumed, the bones revealed striking marks that reflected the methods the early humans used to process and eat the turtles.

Read the full article at Tel Aviv University‘s site.

What Bats Reveal About How Humans Focus Attention

Research into how bats’ brains filter noise show that they are super good at sifting through a sea of sound, and focusing on their own chirp echoes.

“With so many stimuli in the world, the brain needs a filter to determine what’s important,” said Melville J. Wohlgemuth, the lead author and a postdoctoral fellow in the Krieger School of Arts and Sciences’ Department of Psychological and Brain Sciences. “The bat brain has developed special sensitivities that allow it to pick out sounds from the environment that are pertinent to the animal. We were able to uncover these sensitivities because we used the perfect stimulus — the bat’s own vocalizations.”

The researchers experimented with five big brown bats, playing them a variety of sounds while monitoring their midbrain activity. They played recordings of natural chirps, the actual sounds bats made as they hunted. They also played artificial white noise and sounds between the two extremes. All of the sounds were identical in amplitude, duration and bandwidth.

Although sensorimotor neurons in the bat midbrain reacted to all of the sounds, the neurons involved in stimulus selection, those that guide orienting behaviors, responded selectively to a subset of the natural chirps.

Read the full report at John Hopkins University.

Blind Cave Fish-inspired Sensor to Regulate IVs

(L-R) Blind cave fish has an uncanny ability to swim adeptly at high speeds underwater without colliding into any surrounding objects. Protruding outside its entire body are hundreds of neuromasts (lateral line system) that detect movement and pressure changes in the surrounding water. Inspiration from this fish has led to the development of these ultra-sensitive, high resolution, low-cost, miniaturised, zero-powered sensors that is the size of a mere speck on a Singapore 5-cents coin. (photo from SMART Press)

Inspired by the blind cave fish, researchers at the Singapore-MIT Alliance for Research and Technology (SMART) [新加坡-麻省理工学院科研中] have developed Micro-Electro-Mechanical Systems (MEMS) flow sensor so tiny and sensitive that it can be implanted into the IV or intravenous set-up, to aid in regulating the velocity of the fluid flow with minimal intervention by the nurses, thereby reducing their workload while increasing their productivity by 30%; and significantly decreasing the complications of drug infusion via IV therapy. These sensors can also be incorporated into marine underwater robots, lending them sensitivities to wakes, akin to the blind cave fish itself, so that the robots can manoeuvre in a highly energy-efficient manner.

Read the full article at SMART Press.

Bat Wings Inspire New Drone Development

This release has made waves in the news: bat wings influencing the creation of new drones:

A team of researchers led by Professor Bharathram Ganapathisubramani at the University of Southampton, in England, have been experimenting with adjustable bat-inspired membrane wings that also vibrate as air passes over them. They’ve mounted these wings onto a micro air vehicle that uses them (along with ground effect) to zip across water fast and efficiently.

These membrane wings aren’t just flexible, they’re also controllable. They incorporate electroactive polymers that respond to voltage by changing the wing’s stiffness, allowing you to dynamically adjust the wing shape and “dramatically” altering their performance.

Read the full article at Creative Planet Network. Be warned, I am using Safari and had a lot of trouble getting the article to scroll correctly.

Genetics help fish thrive in toxic environments, collaborative study finds

Atlantic Molly, extremophile.

In my underground wanderings I have on one occasion stumbled upon what we believed to be hydrosulfuric acid.  It is pretty nasty stuff. The room, deep in a mine, was eerily decorated with odd formations and crystalline growths, and had pools of blood red liquid on the floor. We discovered several dead bats and decided to get out of there, though our gas detector was not reading anything out of the ordinary.

A 10 year study has just discovered some answers about how organisms can live in these harsh conditions. For example, the Atlantic Molly.

The tiny Atlantic molly can live in small puddles of toxic or nontoxic water. Using genomic tools, the researchers compared gene expression of the mollies living in toxic hydrogen sulfide environments with those mollies living in nontoxic environments just a few yards away.

They found that the fish have a two-pronged approach to survival: They become inert to the toxins that enter the body and they are able to detoxify hydrogen sulfide more efficiently.

Hydrogen sulfide shuts down energy production in cells by interfering with specific proteins. The fish combat this challenge by using anaerobic metabolism, which is an alternative — although much less efficient — way to produce energy and does not involve oxygen.

The scientists found that about 170 of the fish’s 35,000 or so genes were turned on, or upregulated, to detoxify and remove the hydrogen sulfide. The poison invades the fishes’ bodies, but their changed proteins help the fish break down the hydrogen sulfide into nontoxic forms and excrete it.

Want to learn more? Head on over to Kansas State University’s website. Pretty interesting findings.

Sterkfontein Caves produce two new hominin fossils

Bones found in the Sterkfontein Caves. Photo by Witts University.
Bones found in the Sterkfontein Caves. Photo by Witts University.

From Wits University:

Two new hominin fossils have been found in a previously uninvestigated chamber in the Sterkfontein Caves, just North West of Johannesburg in South Africa.

The two new specimens, a finger bone and a molar, are part of a set of four specimens, which seem to be from early hominins that can be associated with early stone tool-bearing sediments that entered the cave more than two million years ago.

“The specimens are exciting not only because they are associated with early stone tools, but also because they possess a mixture of intriguing features that raise many more questions than they give answers,” says lead researcher Dr Dominic Stratford, a lecturer at the Wits School of Geography, Archaeology and Environmental studies, and research coordinator at the Sterkfontein Caves.

– See more at: http://www.wits.ac.za/news/latest-news/research-news/2016/2016-02/sterkfontein-caves-produce-two-new-hominin-fossils.html#sthash.dNY2KWcH.dpuf

How Bats Recognize Their Own “Bat Signals”

(Photo aftau.org)

Bats use sonar to navigate. Just like humans they have unique ‘voices.’ But just like humans, they can only distinguish a certain amount of sounds at once. Think about it, you recognize your voice and the voice of family members and close friends. But have you ever tried to pick out someone’s voice in a crowded auditorium full of excited people talking?

How do bats recognize their own echoing voice clicks when they are surrounded by hundreds of fellow clicking bats?

Tel Aviv University has an interesting article on this and the ramifications of the findings:

A new Tel Aviv University study published in Proceedings of the Royal Society B: Biological Sciencesidentifies the mechanism that allows individual bats to stand out from the crowd. The research, by Dr. Yossi Yovel of TAU’s Department of Zoology, finds that individual bats manage to avoid noise overlap by increasing the volume, duration and repetition rate of their signals.

According to Dr. Yovel, unlocking the mystery of bat echo recognition may offer a valuable insight into military and civilian radar systems, which are vulnerable to electronic interference.

Read the full findings at AFTAU.org